光学薄膜制备技术分享
随着工业和经济的发展,光学薄膜在日常、工业、通信以及航天的应用愈加强大,越来越多的新兴科技的兴起,不断提高对薄膜技术的研究。促使更多的光学薄膜技术蓬勃发展。越来越多光学薄膜制备技术极大拓宽了光学薄膜的可利用材料范围,极大改进了光学薄膜的性能,进而给光学薄膜提供了更加广袤的发展空间。
随着近几年这些行业科技不断提升,对于光学薄膜技术的研究成为当下一个重点课题,下面激埃特小编将带大家了解关于光学薄膜制备的几个技术。
热蒸发原理图(图源网络,侵删)
1、物理气相沉积法
物理气相沉积法简单地说,在真空条件下,采用物理方法,将材料源—固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术. 发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等.之所以选择高真空环境是因为薄膜材料在沉积的过程中不会与空气中的活泼气体反应,以及蒸汽分子在真空环境中不会与气体分子碰撞,而是直接地到达基片.在实际薄膜沉积的过程中,需要控制的工艺参数非常多,通常涉及到真空技术、材料科学、精密机械制造、光电技术、计算机技术、自动控制技术等领域.
2、离子束辅助沉积法
离子束辅助沉积法是在气相沉积镀膜的同时,利用高能粒子轰击薄膜沉积表面,对薄膜表面环境产生影响,从而改变沉积薄膜成分、结构的过程.这种把离子辅助与反应蒸发法结合起来的镀膜技术能够实现低温成膜,改善薄膜的微观结构、力学性能并且提高薄膜和基体的结合力,从而提高薄膜的综合性能.但由于离子束轰击基片的能量束密度不均匀以及高能量离子引起的反溅射等因素,使得离子束辅助蒸发技术在生产应用中受到限制.通常对硫化锌、氟化镁等软膜采用离子辅助技术以后,膜层的牢固性获得了明显的改善,但无论对软膜或电子束蒸发的氧化物硬膜在抗激光损伤方面的效果均不明显.
3、反应离子镀膜法
是利用热阴极弧源诱发膜料离子放电在镀膜室内形成等离子体,蒸发膜料离子部分被电离,在处于悬浮电位的工件架形成电场作用下抵达基片,这样具有一定动能的离子态的膜料粒子与反应气体结合后淀积成膜,该膜层与玻璃基片附着牢固,薄膜的硬度与耐摩擦性能显着提高,因此受到了光学薄膜领域科学工作者的重视.但此项技术设备成本较高,对提高抗激光损伤能力的潜力有待进一步研究.
4、气相混合蒸发法
气相混合蒸发法是用两个电枪同时蒸发两种不同材料,另外用两个石英探头分别监控各枪的淀积速率,通过气相混合,获得渐变折射率膜层的过程.这种光学膜层可用作某些基片材料的单层增透膜,以替代原来镀在基片上的多达几十层的多层膜,从而改善薄膜的微观结构,增加膜层强度,并且使制备折射率按梯度变化成为可能.这种技术消除了用常规方式得到的薄膜与空气(或基体)所形成的突变界面,而以渐变界面取代突变界面,附着力增强,界面吸收减少,另外,渐变界面的热传导系数比普通膜系界面的传导系数高.这种非均匀膜己成为薄膜光学的一个重要分支,它打破了传统膜系的设计方法,并由此得到了使传统膜系不能制备的优良光谱性能,而且期望极大地改善薄膜元件的抗损伤性能(约提高20%),因而引起人们极大的兴趣.
5、溶胶-凝胶法
溶胶-凝胶法是以金属醇盐或其他金属无机盐的溶液作为前驱体溶液,在低温下通过溶液中的水解、聚合等化学反应,首先生成溶胶,进而生成具有一定空间结构的凝胶,然后经过热处理或减压干燥,在较低温度下制备出各种无机材料薄膜或复合材料薄膜的方法.这种技术可以用于制备各种光学膜如高反射膜、减反射膜等,还可以制备光导纤维、折射率梯度材料、有机染料掺杂型非线性光学材料等,以及波导光栅、稀土发光材料等.随着研究的进一步深入,期待和自蔓延法连用制备出常规方法较难制备的新型纳米材料.